If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14w+w^2+45=0
a = 1; b = 14; c = +45;
Δ = b2-4ac
Δ = 142-4·1·45
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-4}{2*1}=\frac{-18}{2} =-9 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+4}{2*1}=\frac{-10}{2} =-5 $
| −3x=17−29 | | 2x=2x=6 | | 3k+9/6=5।K=7 | | 3x+19=6x-32 | | -2x+6=5x+3 | | -85=11-8r | | x=18±5 | | 2x+1=3x^2+4x+5 | | x/4-x-3/3=2 | | 1/2*n*(n+1)=36 | | .a/4=8 | | .6b=42 | | 5n=20* | | x4+45=10 | | X+1+x+3+x+5+x+7+x+9=30 | | 15y*1.5y-29.5y=0 | | 8c-10c=2 | | (94)21=x | | 94x21=x | | 3a=18^2-12^2 | | 45=30x | | -7y=2 | | 7.q=43 | | 45=63x | | 3x*(x+4)=31 | | (3+2x)^2=40 | | 8x+61=149 | | 4x+74=166 | | x*(x+6)=31 | | h-30=-30 | | 15y*1.5y=0 | | 15y*1.5y=y |